- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Xu, Weigao (3)
-
Cao, Jun (2)
-
Kitadai, Hikari (2)
-
Ling, Xi (2)
-
Lu, Zhengguang (2)
-
Smirnov, Dmitry (2)
-
Tan, Qishuo (2)
-
Wang, Xingzhi (2)
-
Burch, Kenneth S. (1)
-
Cheng, Dongfang (1)
-
Cheng, Ran (1)
-
Cohen, Arielle (1)
-
Fang, Susu (1)
-
Feng, Shijia (1)
-
Ge, Yanan (1)
-
Guo, Mingda (1)
-
Haldar, Anubhab (1)
-
Ji, Liyao (1)
-
Li, Hua (1)
-
Li, Tie (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Feng, Shijia; Wang, Xiaojun; Cheng, Dongfang; Luo, Yao; Shen, Mengxin; Wang, Jingyang; Zhao, Wei; Fang, Susu; Zheng, Hongzhi; Ji, Liyao; et al (, Angewandte Chemie International Edition)Abstract CO2electroreduction (CO2R) operating in acidic media circumvents the problems of carbonate formation and CO2crossover in neutral/alkaline electrolyzers. Alkali cations have been universally recognized as indispensable components for acidic CO2R, while they cause the inevitable issue of salt precipitation. It is therefore desirable to realize alkali‐cation‐free CO2R in pure acid. However, without alkali cations, stabilizing *CO2intermediates by catalyst itself at the acidic interface poses as a challenge. Herein, we first demonstrate that a carbon nanotube‐supported molecularly dispersed cobalt phthalocyanine (CoPc@CNT) catalyst provides the Co single‐atom active site with energetically localizeddstates to strengthen the adsorbate‐surface interactions, which stabilizes *CO2intermediates at the acidic interface (pH=1). As a result, we realize CO2conversion to CO in pure acid with a faradaic efficiency of 60 % at pH=2 in flow cell. Furthermore, CO2is successfully converted in cation exchanged membrane‐based electrode assembly with a faradaic efficiency of 73 %. For CoPc@CNT, acidic conditions also promote the intrinsic activity of CO2R compared to alkaline conditions, since the potential‐limiting step, *CO2to *COOH, is pH‐dependent. This work provides a new understanding for the stabilization of reaction intermediates and facilitates the designs of catalysts and devices for acidic CO2R.more » « less
-
Wang, Xingzhi; Cao, Jun; Li, Hua; Lu, Zhengguang; Cohen, Arielle; Haldar, Anubhab; Kitadai, Hikari; Tan, Qishuo; Burch, Kenneth S.; Smirnov, Dmitry; et al (, Science Advances)Correlated-electron systems have long been an important platform for various interesting phenomena and fundamental questions in condensed matter physics. As a pivotal process in these systems, d-d transitions have been suggested as a key factor toward realizing optical spin control in two-dimensional (2D) magnets. However, it remains unclear how d-d excitations behave in quasi-2D systems with strong electronic correlation and spin-charge coupling. Here, we present a systematic electronic Raman spectroscopy investigation on d-d transitions in a 2D antiferromagnet—NiPS 3 , from bulk to atomically thin samples. Two electronic Raman modes originating from the scattering of incident photons with d electrons in Ni 2+ ions are observed at ~1.0 eV. This electronic process persists down to trilayer flakes and exhibits insensitivity to the spin ordering of NiPS 3 . Our study demonstrates the utility of electronic Raman scattering in investigating the unique electronic structure and its coupling to magnetism in correlated 2D magnets.more » « less
An official website of the United States government
